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Abstract

There is limited methodological guidance for estimating system dynamics (SD) models using
datasets common to social sciences that include few data points over time for many units under
analysis. Here, we introduce indirect inference, a simulation-based estimation method that can
be applied to common datasets and is applicable to SD models that often include intractable
likelihood functions. In this method, the model parameters are found by ensuring that simulated
data from the model and available empirical data produce similar auxiliary statistics. The method
requires few assumptions about the structure of the model and error-generating processes and
thus can be used in a variety of applications. We demonstrate the method in estimating an SD
model of depression and rumination using a panel dataset. The overall results suggest that
indirect inference can extend the application of SD models to new topics and leverage common
panel datasets to provide unique insights.
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Background

Most system dynamics (SD) models use a single case study and apply tradi-
tional estimation methods (e.g. mean squared error, mean absolute percent-
age error) to time series data of that case to specify unknown parameter
values. However, more flexible methods of estimation are needed in both
theoretical and practical applications to leverage data structures beyond
single-case time series. With the increasing availability of data on various
research subjects—f{rom individual level to company- and country-level
phenomena—formal model calibration has become a requisite step in
producing credible model-based analyses that are trusted by various
academic audiences. However, three major challenges exist in estimating
SD models. First, SD models are often complex and nonlinear and the likeli-
hood functions are intractable; thus many conventional statistical methods
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do not directly apply. Second, due to the structure of many datasets, even the
heuristic calibration methods commonly used in SD practice that minimize
the differences between empirical time series and simulated counterparts
may not apply. For example, many “panel” datasets include data at only a
few points in time, but in many units under analysis (e.g. individuals, orga-
nizations or countries), complicating the matching of the simulations to data
using traditional methods that require many data points over time for each
unit. For the same reason, other methods such as Kalman filtering (Kalman,
1960) or extended Kalman filtering (Smith et al., 1962), which adjust state
variables based on measured system behaviors, or partial model calibration
(Homer, 2012; Hosseinichimeh et al., 2015) cannot be used effectively when
very few data points are available over time. Third, in many applications,
randomness, which is exogenous to a model’s boundaries, has a significant
role in the behavior of the system; therefore, noise should be considered ex-
plicitly in the estimation of the model. These complications call for the intro-
duction of more rigorous, simulation-based estimation methods to the SD
literature.

Simulation-based estimation methods have been introduced with the
increasing computational power of computers and have made it possible to
run many numerical simulations of large datasets in short periods of time.
The basic idea behind these methods is to match properties of the simulated
data to those of the empirical data. These methods include the method of
simulated moments (Duffie and Singleton, 1993; Jalali et al., 2015; Mcfadden,
1989; Pakes and Pollard, 1989), the efficient method of moments (Durlauf and
Blume, 2008) and indirect inference (Gourieroux et al., 1993; Gouriéroux
et al., 2010; Smith, 1993), among others. These methods are mostly useful
for models with intractable likelihood function such as nonlinear dynamic
models and models with missing, incomplete or noisy data.

In this article, we provide an introduction to indirect inference, one of the
most flexible methods available in this space, and explain how it can be
applied in SD modeling. This method has been applied in various fields for es-
timating different types of models including nonlinear ecological dynamic
systems (Wood, 2010), dynamic panel models with intractable likelihood
function (Gouriéroux et al., 2010), continuous time models (Monfort, 1996)
and stochastic volatility models (Monfardini, 1998), among others. However,
to our knowledge, no study has implemented indirect inference for calibrating
SD models distinguished by a focus on endogenous feedback relationships
among variables. We first present an SD model of major depressive disorder
(MDD) and discuss the challenges in estimating the unknown parameters of
the model. We then introduce the indirect inference method and explain the
steps needed to estimate unknown parameters of a model. We apply this
method to our SD model of MDD to demonstrate the estimation procedures
with an empirical dataset. Finally, we discuss the conditions under which
SD studies can benefit from indirect inference.
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Fig. 1. The depression—
rumination conceptual
model. Boxes depict stock
(or state) variables and ar-
rows with values repre-
sent flows into/out of
those stocks. Single-line
arrows indicate causal re-
lationships hypothesized
among variables (the
strength of which is esti-
mated below). A stock
variable is the accumula-
tion of the difference be-
tween its inflows and
outflows and, mathemati-
cally, is represented as an
integral

An applied example

Here we present a simple SD model of MDD, a disabling condition that causes
feelings of sadness and loss of interest. Different mechanisms including
genetic, cognitive, environmental and biological factors contribute to the
disorder. To keep the applied example simple, we focus only on the impact
of rumination (a cognitive factor) and stressful life events (an environmental
factor). Rumination is defined as repetitive thinking about the causes and
consequences of a stressor without focusing on coping strategies or engaging
in problem solving (Nolen-Hoeksema et al., 2007). As shown in Figure 1, the
model has two reinforcing loops (R1 and R2). Loop R1 captures the idea that
when an individual with a ruminative response style experiences a stressful
event, she spends time thinking about that stressor, keeping the stressor ac-
tive, and thus increasing the chance of even more rumination (Ruscio et al.,
2015). In other words, engaging in rumination increases the duration of
recalling a stressor (i.e., memory time) and thus increases the accumulation
of stressor memory, causing an even higher level of rumination (loop R1).
Current rumination is formulated as a stock adjusting with a time constant
towards indicated rumination, which is a linear function of stressor memory
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(Michl et al., 2013), current depressive symptoms (Nolen-Hoeksema et al.,
2007) and gender (Nolen-Hoeksema et al., 1999).

Loop R2 demonstrates that more rumination elevates depressive symptoms
and higher depressive symptoms lead to more rumination (Nolen-Hoeksema
et al., 2007). The stock of depressive symptoms is the smooth of indicated
depressive symptoms, which is a function of rumination. Moreover, random
events outside the model boundaries affect rumination and depressive
symptoms. Randomness recognizes that indicated depressive symptoms and
indicated rumination are not deterministic and vary by factors outside the
model boundary based on a probability distribution; however, there is some
autocorrelation in how those chance events unfold. Therefore, normally
distributed pink noises are added to the indicated rumination and indicated
depressive symptoms, RumNoise~N(0,0?) and DepNoise~N(0,0%) with
correlation time p, respectively. We assume the same correlation time for
rumination and depression because they are both generated by stressful
events and other exogenous shocks that are similar in nature. All equations
are presented in the online Appendix (supporting information). The model
has 12 unknown parameters (p = 12), listed in Table 1, that need to be
estimated.

The available dataset for estimating the SD model parameters reports all
three variables of interest (i.e. depressive symptoms, rumination and stressful
life events) for 661 adolescents from two middle schools in Connecticut
(Michl et al., 2013). The main challenge is that these variables are reported
in few points in time. The tendency to ruminate was assessed at three points
in time (Ty, T,, and T3), while the questionnaires related to depressive
symptoms (Children’s Depression Inventory) and stressful life events
(Life Events Scale for Children) were completed only at T, and T3. The time
between the first and second assessments and the second and third

Table 1. Unknown para-

meters in the model Unknown parameters (0) Unit
Rumination constant (6;) RumScore
Effect of depressive symptoms on rumination (6,) RumScore/DepScore
Gender coefficient (65) RumScore
Effect of stressors on rumination (6,) RumScore/Disruption
Rumination coefficient (65) Dmnl?
Depression constant (6) DepScore
Effect of rumination on depressive symptoms (6;) DepScore/RumScore
Depression Coefficient (0s) Dmnl
Effect of rumination on memory time () 1/RumScore
Standard deviation of rumination noise (0;,) Dmnl
Standard deviation of depression noise (61) Dmnl
Correlation time (6,5) Month

Dimensionless.

Copyright © 2016 System Dynamics Socie(tly

DOLI: 10.1002/sdr



N. Hosseinichimeh et al.: Estimation Using Indirect Inference

Table 2. Means and stan-
dard deviations” of variables’

assessments are 4 and 3 months, respectively. Table 2 summarizes the means
and standard deviations of variables each time data were collected.

Conventional estimation methods in SD compare data over time for each
individual against the simulation model of that individual to estimate an
individual-level model. For example, Croson and colleagues use data over
48 weeks for individual decisions in the beer game to estimate each person’s
four-decision rule parameters across many settings (Croson et al., 2014). Yet
in this example we only have seven data points for each individual; thus
separately estimating a dozen parameters for each participant is infeasible.
The richness of the current dataset is in the large number of available
participants. If we assume the core model parameters represent basic
biological processes that are similar across individuals (a common assump-
tion in typical statistical models), we should be able to leverage the large
sample size to estimate the dozen unknown model parameters. Yet conven-
tional time-series estimation methods in the SD literature do not provide a
recipe for such a scenario. To resolve such estimation challenges, we next
introduce indirect inference.

Indirect inference method

General properties and historical background

The main idea behind the indirect inference method is to match properties of
empirical and simulated data in order to estimate the unknown parameters of
the model of interest. This method was developed to overcome the challenges
of estimating complex model parameters for which the likelihood function is
intractable. In the indirect inference method, the simulated data are generated
by simulating the model of interest; then, an “auxiliary model” that typically
consists of simple regression(s) is selected and parameters of the auxiliary
model are estimated by using both the empirical and the simulated data.
The difference between these two sets of parameters of the auxiliary model
is minimized to estimate the parameters of the model of interest.

The indirect inference method has several advantages. First, there are
few limitations to the types of models to which it can be applied. The only
requirement is that the model of interest can be simulated for different values

Variable Time 1, T, Time 2, T, Time 3, T,
Depressive symptoms 9.48 (6.28) — 9.78 (7.64)
Rumination 11.59 (7.52) 10.85 (7.62) 9.95 (7.95)
Stressful life events 4.96 (3.32) — 4.20 (3.70)

“Standard deviations are in parentheses.
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of its parameters. Second, although this method is a simulation-based tech-
nique, it can be relatively inexpensive to compute when the auxiliary model
uses a maximum likelihood estimator, and thus the auxiliary model parame-
ters have small variance and could be matched reliably with few simulations
(Gouriéroux et al., 2010). Third, the indirect inference method inherits the
beneficial properties of the estimation method used for the auxiliary model
(Gouriéroux et al., 2010). For instance, if the maximum likelihood method is
used to find the parameters of the auxiliary model, the estimated parameters
resulting from indirect inference would also have small variance. Fourth, it
can be used for both estimating and validating a model. The validation step al-
lows the modeler to decide if the model’s outputs are indistinguishable from
empirical data or if notable differences exist after estimation that could inform
further model refinement. In this article, we discuss one such validation test.
We also investigate the method’s validity using a separate approach in which
indirect inference is applied to a synthetic dataset generated by simulation of
the calibrated model, and we evaluate the method’s ability to recover correct
parameters from a structurally precise model.

The method of simulated moments (MSM; Mcfadden, 1989) is one of the
first rigorous simulation-based estimation methods. It is the workhorse of
modern econometrics and motivates the idea of indirect inference. In this
method, model parameters are estimated by minimizing the difference
between selected moments (e.g. mean and variance) of empirical data and
corresponding moments of model-generated simulated data. Only a few
studies exist that have implemented MSM to calibrate SD models.
Rahmandad and Sabounchi (2011) calibrated a dynamic model of obesity at
both individual and population levels by using MSM, and Jalali et al. (2013)
discussed the application of MSM to SD models. The indirect inference
method, proposed independently by Gourieroux et al. (1993) and Smith
(1993), is very similar to MSM in matching some functions of empirical data
against the same function calculated on simulated data. However, it is more
general because, rather than only the statistical moments, a wider set of
functions of the empirical and simulated data can be matched to estimate
the unknown parameters. These functions are created using auxiliary models.
Although the auxiliary model is typically a separate estimation, it does not
need to capture the true data-generating process. The auxiliary model serves
only as a lens through which we view the empirical data and calculate
functions we then match to their simulated counterparts. The parameters of
the model are set in a way that both empirical and simulated data produce
very similar images as they pass through this lens.

Other methods exist that follow a similar logic. Structural equation
modeling (SEM) is based on matching the observed covariance matrix and
model-generated covariance matrix (Anderson and Gerbing, 1988). In
actor-based network models, the statistical properties (e.g. degree distribution,
centrality and clustering) of empirical networks are compared with those of
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the simulated networks to estimate the model parameters (Snijders, 2001).
Overall, indirect inference and its derivatives are among the most flexible
econometric methods for estimating complex models using various data struc-
tures. Given its moderate computational costs, the method could be applied
easily to models of modest size when a handful of model parameters require
estimation. However, estimating a large number of parameters (e.g. hundreds)
could be much more challenging because the underlying optimization prob-
lem is non-convex. Currently, there are no studies in the literature that apply
the indirect inference method to SD models. In the next section, we introduce
the method formally and present a step-by-step guide for applying it.

Description of the method

Consider a general dynamic model with stock (state) variables z, the dynamics
of which are described as % = f(0p,z,u,¢), and a set of exogenous variables,
u, and observable variables, x, which are a function of z:

x = g(00,z,u,&) (1)

Here, function fdescribes the dynamics of the system and function g defines
the measurement process. It is assumed that the structure of both of these
functions is known. A vector of random errors with a known distribution®
(e=ul(ey,€2)) adds uncertainty to the dynamics and measurements. Finally, a
set of parameters quantifying both the dynamics of the system (f) and the
observation function (g), 8=(0p,0p),” is unknown and the goal of the
estimation process is to find these parameters. Note that the model and
measurement functions may apply to a single case or multiple units of the
phenomenon of interest. For example, a panel dataset includes measures on
dynamics of several parallel units (e.g. people, firms, or countries) over time.
Figure 2 summarizes the steps needed to estimate the model parameters, 0,
by using the indirect inference method.

The intuition behind indirect inference is simple: if we calculate a set of
empirical statistics from the data (S), a good model of the data-generating
process should be able to closely simulate these empirical statistics.
Therefore, we search for a set of 8 parameters, which, when used to simulate
the SD model, lead to simulated statistics that closely correspond to empirical
statistics we have calculated using the empirical data. Consider a very simple
example in which individuals’ weight change over time is modeled in an SD

"The distribution of & does not need to be known. & can be a function of a random process with a known distri-
bution and an unknown parameter of the model of interest (8) (Gourieroux et al., 1993). Moreover, if there is
uncertainty in the initial conditions of stock variables, that uncertainty could be incorporated into &.

“Note that 8 and 0 could each include multiple parameters describing a detailed SD model and various func-
tions relating the stock variables to observable variables in an empirical setting.
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Fig. 2. The required steps
for estimating parameters
of a dynamic model

Model of interest ) 0
(SD model)
Empirical Data Simulated Data Optimization
v iterations until

S-5WES-5)

Conversion of data to statistics o
is minimized

S=S;, S>..., Sk §=5,(6), 52(6)...., Sk (6)

Empirical-auxiliary statistics Simulated-auxiliary statistics

A4 A 4

Minimize (S — S)W (S — S) }

alndirect Inference

model with a single stock of W and the equations: dW/dt = E * (6, + 0, * W)
and E ~ Normal(0, 03). Assume that weight measurements at two points in
time, W, and W,, are available for 100 individuals, and we want to estimate
the population-level 6 parameters using these data. Note that we are assuming
0 parameters are the same for all individuals, and individual differences are
only coming from differences in initial weight and the randomness in the nor-
mally distributed E variable. Indirect inference instructs us to generate some
empirical statistics, S, using this data, which should then be matched by sim-
ulations of the model. For example, S could include the average weight at time
two, the variance of weight at time two, and the regression coefficients
predicting W, as a linear function of W; and a constant (the regression has
two coefficients), for a total of four statistics. We then simulate the body
weight change of the 100 individuals, each starting from their actual W, and
growing based on the system’s dynamics using a set of values of 8. We calcu-
late the four elements of S for each simulated population, and change the 6 un-
til the four simulated statistics closely match the empirical ones, at which
point we have found good estimates for the true 6 values. The formal steps
to accomplish this idea follow.

First, suitable statistics of empirical data, x, are generated S = (S;, S, ..., Si).
These statistics could include coefficients of an auxiliary model (e.g., a regres-
sion that estimates some elements of x based on other elements or lagged
values) or they could be any statistics of a dataset such as mean and
standard deviation (Wood, 2010). Second, the corresponding simulated
statistics S(0) = Si(0), S.(0), ..., Si(6) are calculated/estimated. To gain
better accuracy, for a given value of 6, the model of interest (SD model) is
simulated H times by using H different streams of noise over time,

Copyright © 2016 System Dynamics Socie(tly
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st( =gl ...,s?),h =1, ...H. As a result, H replications of empirical x are

generated and S(0) = (S,(0), S2(0), ..., Sk()) is estimated for each replication
- H

of x. Third, the average of these estimators is found Si(0) =% X Si(®)") and
h=1

0 is estimated by minimizing the difference between empirical-auxiliary
statistics (S1, S, ..., Si) and the average of corresponding simulated statistics
S(0) = (51(0),5:(0), ... ,Sk(0)) (Gourieroux et al., 1993). The number of
statistics, k, should be equal to or larger than the number of unknown
parameters. A thorough explanation of each step is provided in the following
sections.

1. Define and estimate a set of empirical-auxiliary statistics. The first step is
to select a set of statistics, which, when matched in simulation, allow us to
find the model parameters. There is substantial flexibility in terms of
defining these statistics. Common statistics include mean, standard
deviation, autocorrelation and correlation matrices of observed variables.
Although these statistics are typically calculated across different units of
analysis for cross-sectional and panel data (e.g. the mean weight in a group
of subjects), they could also be calculated over time for a single case.
Besides simple statistics, more complex auxiliary models could be defined
that relate some of the observed variables to the other ones or to the lagged
values of the same variable. The coefficients of these models (i.e. regression
coefficients) could then be appropriate statistics to include in the statistics
vector. We will refer to these statistics estimated from the empirical data as
empirical-auxiliary statistics (Si, So, ..., Si). Note that auxiliary models do
not need to be accurate (i.e. the density function may not accurately
describe the conditional distribution of x for the element of x being
estimated (Durlauf and Blume, 2008)). It is an approximate model, which,
unlike the model of interest, can be easily estimated with limited computa-
tional costs (e.g. using a simple linear regression). If the data-generating
process (the model of interest, i.e. the SD model) is identical to the real-
world data-generating process, we would then expect the replication of
simulated auxiliary statistics to be close to the empirical ones. As a result,
rather than trying to remove the biases in the auxiliary models (which may
not be feasible because of limited data; for example, where we do not have
continuous data but only irregular samples with measurement error), we
find the data-generating model that gives the same results as those biased
models using similar operations, which ensures that the model of data-
generating process is fairly accurate. Note that in indirect inference the co-
efficients of auxiliary models are not the final output but rather a means to
estimate the true model of the data-generating process. If they are
inaccurate/biased, both the empirical- and simulated-auxiliary statistics
would be biased for the same reasons and therefore should match when

Copyright © 2016 System Dynamics Socie(tly
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the model of data-generating process matches the true process. In other
words, the true model of the data-generating process can be accurately es-
timated by matching biased empirical and simulated auxiliary statistics.
Consider a tangible example: you are given a warped picture of a scene
and asked to find the actual scene from a line-up of undistorted images.
The picture you have is distorted because it was taken with a warped lens
that changed the shape and coloring of the actual image. Think of the char-
acteristics of this warped picture as empirical-auxiliary statistics. Think of
the search for the true scene as finding the parameters of the SD model that
best matches the true data-generating process. Indirect inference uses the
same warped lens to look at each candidate’s true image, and picks the
one that, once transformed with this warped lens, produces the closest fit
to the initial (warped) picture. In this analogy, each candidate picture is
generated when the SD model creates simulated data, and the warped lens
is applied when simulated auxiliary statistics are calculated for those data.
The best SD model is found when the simulated auxiliary statistics match
the empirical ones.

While many different auxiliary models could be beneficial, the estimation
would be more efficient if the auxiliary models were defined as precisely as
possible; i.e. the auxiliary model is a good approximation of some aspects of
f and g functions that are reflected in the estimated relationship (Guvenen
and Smith, 2014). A more precise model reduces the variance of estimated
regression coefficients (elements of S;, S,, ..., Si) and thus enables a reliable
estimation with a smaller number of simulations, H. In general, good
empirical-auxiliary statistics have information about the model parameters
in question, and bound those parameters from multiple angles, so that the
empirical evidence embedded in the statistics puts strong constraints on
the value of unknown parameters.A couple of examples help to illustrate
the idea of auxiliary models. Consider a nonlinear model: y; = exp(x;y) +
uj, u;~/'[0,6%].The auxiliary model could be y; = x;8 + &, &~4[0,6%] (Cam-
eron and Trivedi, 2005). Another example is a two-level logistic model,
xi=logit™ '(pi) + ejx, in which logit(pji) = 0y + 01z + ug and x; is the ith obser-
vation in the kth group. This model has an intractable likelihood function and
conventional estimation methods cannot estimate it. An auxiliary model for
implementing indirect inference could be x}, = g, + 1z + ux + e, (Mealli
and Rampichini, 1999).A good empirical-auxiliary statistic has four key
characteristics. First, it should be relatively stable; i.e. its value should not
be very sensitive to the process and measurement noise streams (g). The
empirical value of a noise-sensitive statistic is not reliable and, as such, does
not have much information to guide the identification of model parameters.
Second, good statistics are sensitive to change in at least one of the parameters
in 0. In the extreme, if a statistic does not vary with changes in any of the
model parameters, there is no way to backtrack the value of any parameter
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based on the information in that statistic. Both of these conditions could be
partially tested using simulations. One could simulate a model in the range
of considered parameters and measure the sensitivity of the simulated
statistics with respect to model parameters (%) and their sensitivity to
different noise streams. Third, empirical statistics should be inexpensive
to calculate; otherwise, the multiple iterations needed to solve the optimiza-
tion problem may become infeasible. Therefore, simple linear regressions
are preferred over regression models that require non-convex optimizations.
Fourth, the number of statistics should be equal to or greater than the
number of parameters that need to be estimated. In other words, k>p, where
p and k are the number of elements in the vector 0 and the statistics vector
(S1, Sy ..., Sp), respectively. If k< p, unknown coefficients cannot be
estimated and more statistics should be added to the vector of statistics to
make k equal to or greater than p. After choosing the appropriate statistics, in-
cluding the auxiliary model(s), the empirical-auxiliary statistics (Si, Sz, ..., Si)
are estimated or calculated using the empirical data x.

2. Generate the simulated data using the SD model. First, H independent
drawings of ¢ (ell, ... ,&}) are generated. These streams of random num-
bers are generated only once and kept constant for the rest of the process.
Then, for a given 0, the SD model is simulated H times (H replications
using the independent drawings above). This process creates the simulated
data that contains H paths (x, ..., x4), where h = 1, ..., H. The number of
observations in each path should be equal to the number of observations in
the empirical data. It should also be noted that the same & (e, ... ,&%) are
used for each value of 6 simulated during optimization (i.e. we use the
same noise seed values for each iteration of the optimization).

3. Estimate the simulated-auxiliary statistics using the auxiliary model and
simulated data. For each of the H paths, the simulated statistics are
estimated in the same fashion used in the calculation of the empirical-
auxiliary statistics. The only difference is that, instead of using empirical
data, simulated data are used to estimate those statistics, which we call
simulated-auxiliary statistics. The key point is to generate the same statis-
tics using the empirical and simulated data (they are both (k x 1) vectors).
After finding the simulated statistics for each path, the average of these H
simulated-auxiliary parameters is found as

S0 =L h
x(0) —thlsk(ﬁ) (2)

Typical values of H could range between a handful and hundreds, depending
on the variance of the simulated auxiliary statistics. If that variance is high, a
larger H is recommended to reduce error resulting from the simulation of
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statistics. However, note that computational costs scale linearly with H and
the incremental value of increasing H is limited because for the empirical
statistics we only have a single path available; thus the total sampling error
approximately scales with (1 + 1/H).

4. Minimize the difference between the empirical-auxiliary statistics and the
simulated-auxiliary statistics. The unknown parameters (0) are estimated
by minimizing the weighted differences between the empirical-auxiliary
statistics (Si, S, ... , Si) and the average of the simulated-auxiliary statis-
tics (S1(6), S2(0), ..., Sk()). In other words, the parameters of the
model of interest are estimated as

0 = argmin <S L § S(@)h) ,W(S - % S(e)h) (3)
H = H p=

The weighting matrix (W) can be any positive definite matrix in theory, but
good choices of W are critical for obtaining reliable parameter estimates.
Therefore, the calibration of the indirect inference is usually performed in a
two-step procedure with two different values of W. In the first step, W can
be chosen to be a diagonal matrix in which the diagonal element i of the
matrix is the inverse of square of the ith empirical statistic (1/S*) and
the non-diagonal elements are zero (let us call this matrix W,). W, ensures
that some statistics do not dominate the optimization if their magnitude is
much larger than the others. However, W, is not theoretically optimal in the
sense that it does not provide the lowest standard deviation for the estimated
parameters. After performing optimjzation using the initial W, and obtaining
estimates of the model parameters 61 , we switch to another W, the inverse
of the variance-covariance matrix of the simulated statistics (using 6, to
estimate this matrix) and repeat the estimation process. It is important to note
that in calculating the variance-covariance matrix a large number of
simulations (e.g. thousands)® using distinct noise streams will be needed.
However, this step is done only once and not repeated during optimizations,
so computational costs are not a concern. The intuition behind using the
inverse of the variance—covariance matrix is that those statistics with a large
variance (i.e. they are sensitive to the choice of random noise) should get
lower weights. Although stopping after the second estimation gives reliable
results in many applications, W can be recalculated (based on 6 achieved in
the second step) to estimate a new set of parameters. This process can be
iterated through until the estimated parameters converge across successive
iterations.The initial assumed values for 6 could impact the speed of

*Note that number of simulations in steps 2 and 4 are different. In step 2, fewer simulation paths are needed,
while for estimating the weight matrix consistently a much larger number of simulations should be used, be-
cause estimates of the covariance matrix require large numbers of simulations.
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convergence in the optimization process or trap the optimization in a local
optimum. If the coefficients of the auxiliary model and the unknown
parameters in the main model are similar in their meaning, the initial values
for model parameters could be chosen to equal the corresponding empirical-
auxiliary statistics. If they are not similar, qualitative information on the
appropriate range of such parameters or rough initial estimates using a
relevant estimation method could help initialize the model from a more
promising point in the parameter space. Even with good initial points,
however, the optimization may become stuck in a local optimum, so the
optimization algorithm should include multiple start points to increase
the chances of finding the global optimum.

5. Model assessment test. When k > p, the model is said to be over-identified.
Since in this method we minimize the distance between empirical-
auxiliary statistics and their simulated counterparts, over-identification
does not change the estimation approach. In fact, over-identification is
helpful for further restricting the estimated parameters and offering tighter
confidence intervals. It can also help further evaluate the model’s overall
goodness of fit, such that the optimal value of the objective function can
be used to test how well the model has been specified. The following
statistic () is distributed asymptotically as a chi-square with k— p degrees
of freedom. The null hypothesis is that the model of interest (our SD
model) is not different from the true data-generating process. If the test sta-
tistic is larger than the threshold for chi-square distribution with the de-
sired precision, we then reject the null hypothesis, inferring that the
model’s structure could be improved further:

cr

H H ' H
=g min (S — %hgls(a)h> w(s — %hglsw)h) (4)

The estimation would be more efficient if the auxiliary model were defined
as precisely as possible; i.e. the auxiliary model is a good approximation of
some aspects of fand g functions which are reflected in the estimated relation-
ship (Guvenen and Smith, 2014). A more precise model reduces the variance
of estimated regression coefficients (elements of S;, S,, ..., Si) and thus
enables a reliable estimation with a smaller number of simulations, H.

Calibration of the applied example

Here we demonstrate the application of indirect inference for estimating the
SD model of depression depicted in Figure 1 using the panel dataset described
in Table 1.
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The steps to estimate the parameters of the depression—rumination model
are as follows.

1. Define and estimate a set of empirical-auxiliary statistics. There is no
simple rule to identify the best auxiliary model, and the modeler’s
judgment and insight guide this selection. However, estimation benefits
generally from auxiliary models whose coefficients are informative about
the parameters we want to estimate, e.g. those capturing similar types of
information and relationships. Thus our auxiliary models include three
regressions that are similar to the formulas to be estimated in the main
model for indicated rumination, indicated depressive symptoms and
stressor memory in the SD model (see Table 3). The first regression
(presented in the first row, third column of Table 3) relates to rumination
and includes coefficients informative about the indicated rumination
formulation (first row, second column of Table 3, which quantifies the
impact of gender, stressful life events and depression on rumination). Note
that the SD model formulations are simulated in continuous time, whereas
the auxiliary models use empirical data collected at discrete points in time
(and are subscripted accordingly). In the SD model, we hypothesized that
indicated depressive symptoms were a function of rumination (second
row, second column of Table 3). As a result, we included rumination in
the second regression (second row, third column of Table 3). The previous
values of rumination and depressive symptoms were included in the first
and second regressions, respectively, because the predictive power of the
auxiliary models improved by adding them. In addition, incorporating
previous values accounts for the inertia observed in those variables and
encodes information about some of the time constants in our SD model.
The third regression is an approximation of the change in stressor memory
per month (third row, third column of Table 3). The change in stressor
memory was divided by 7 months (the time between the two measure-
ments) to get the stressor memory change per month.Note that one could
come up with other auxiliary models and statistics, such as autocorrela-
tions and correlations across empirical variables over time. By getting the
auxiliary statistics from the above regression models, we tap into that more
complex correlation information, while controlling for multiple factors.
This allows us to use more informative signals than raw correlations and
reduce the noise in the auxiliary statistics.

To estimate the auxiliary-empirical statistics, we ran the three regressions
(third column of Table 3) using the ordinary least squares (OLS) technique
(all statistics related to regressions are shown in the Appendix). In addition,
we included the mean of depressive symptoms at T3 and rumination at T,
and T3 as statistics. The resulting empirical statistics (Si, Sa, ..., S14) are listed
in Table 4. Because the number of statistics (k = 14) is greater than the number
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Table 3. Formulae used in the SD model of depression and corresponding auxiliary models used in the indirect inference

method
Concept Formula used in the SD model Corresponding auxiliary models
Lo L ruminationg=
indicated rumination; = .
L. . b; + b, depressive symptoms, +
Rumination (61 + 0, xdepressive symptoms, + 03 xgender

Depressive symptoms

Stressor memory

+04 xstressor memory,)/(1 — 65)

indicated depressive symptoms, =
(0 + 07 xrumination;)/(1 — 0g)

stressor memory; — stressor memory,,

t
= Lo [new stressors(s) — let it go(s)|ds

b; gender+ by stressor memory, -+

bs rumination, +bg rumination, +&;

depressive symptoms, = a; + a, rumgs

+az depressive symptoms,; + ¢,

(stressor memory, — stressor memory, )/

stressor memory,
7=0—C———+¢&3
rum,

Table 4. Value of the em-
pirical auxiliary statistics

of unknown parameters (p = 12), we have enough degrees of freedom to test
also the model’s specification quality after estimation.

2. Generate the simulated data using the SD model. For generating a simu-
lated data path, we first set the value of stocks to the corresponding empirical
values (e.g. depressive symptoms, = depressive symptoms at T;). We then
generate H = 200 paths by adding random noise to the indicated rumination
and indicated depression for each individual (the resulting noise matrix has
200 columns and 661 rows, with two noise values for each cell corresponding
to the depressive symptoms and rumination noise). We repeat this procedure

Regression

Empirical auxiliary statistic

First row—third column
of Table 3

Second row—third
column of Table 3

Third row—third
column of Table 3

Mean

b, —0.4663
b, 0.2313
b, 1.2021
by 0.1316
bs 0.4548
b 0.1749
a, 2.0012
a, 0.2526
as 0.5559
I —0.0201
cy —0.1222
Mean of depressive symptoms at T 9.7852
Mean of rumination at T, 10.8487
Mean of rumination at T; 9.9546
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Table 5. Estimated para-
meters in the first and
tenth rounds of optimization’

at every time step as we simulate each of the individuals over 7 months.

. Estimate the simulated-auxiliary statistics using the auxiliary model and

simulated data. After generating the simulated data, for a given 0, the
simulated-auxiliary statistics are estimated in a similar fashion to the
empirical-auxiliary statistics for each path. In this case, we run three
regressions presented in the third column of Table 3, and include the other
statistics to create a vector of simulated auxiliary statistics (S,(0)", S,
)", ..., S14(®" for each path. The average of these H simulated-

H
auxiliary statistics is then found as 33 S (O
h=1

. Minimize the difference between the empirical-auxiliary statistics and the

simulated-auxiliary statistics. A good estimate for the initial value of
parameters can be found by running regressions on equations of indicated
rumination and indicated depressive symptoms. The initial value for
standard deviations of RumNoise and DepNoise are the residuals of these
two regressions. The initial values of other parameters, effect of rumination
on time constant (0y) and correlation time (0,,) are arbitrarily selected. The
initial values are summarized in the first column of Table 5. The unknown
parameters (0) are estimated by using the fmincon solver in MATLAB
combined with its global search algorithm, which attempts smartly chosen
start-points in the parameter space to increase the likelihood of finding the
global optima. The same set of noise matrices are used in each iteration of

Initial value  First round of

Unknown parameters (6o) optimization  10th round of optimization
Rumination constant (6,) 0.3320 —0.5064 —1.2504[-3.1920, 0.6911]
Effect of depressive symptoms on

rumination (6,) 0.2490 0.1187 0.4236[—0.1661, 1.0132]
Gender coefficient (03) 1.3540 0.7883 2.5152[0.5518, 4.4787]
Effect of stressors on rumination (6,) 0.1240 0.0824 0.2518[0.0227, 0.4809]
Rumination coefficient (65) 0.5470 0.6202 0.1639[-0.8064, 1.1342]
Depression constant (6) 2.0010 0.3207 0.3730[0.2968, 0.4491]
Effect of rumination on depressive

symptoms (6;) 0.2520 0.0530 0.0699(0.0638, 0.0759]
Depression coefficient (0g) 0.5560 0.9102 0.8894[0.8822, 0.8967]
Effect of rumination on memory time

(6) 1.0000 2.1865 1.4741[1.3735, 1.5747]
Standard deviation of rumination

noise (010) 5.8000 2.8678 7.8735[—0.1391, 15.8861]
Standard deviation of depression

noise (014) 6.0500 0.0016 0.0002[—0.0307, 0.0311]
Correlation time (6;5) 1.0000 0.4266 1.6008[0.0456, 3.1559]

95% confidence interval is presented in parentheses.
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the optimization to ensure comparability. The weight matrix (W) is esti-
mated by using a large number of simulations (for this case we used 2000
simulations). The estimated parameters are shown in Table 5. All materials
for estimating the parameters of the model are provided in the online
Appendix.

Results

Table 5 shows the estimated parameters of the SD model, including the
estimated parameters found in the first round of optimization and the esti-
mated parameters found after 10 rounds of optimizations. In the first round
of optimization the weighting matrix is W, defined above. In the next
rounds of optimizations, the weighting matrix is the inverse of the
variance—covariance matrix of the statistics based on parameters estimated
in the previous round of optimization. We ran 2000 simulations to estimate
the weight matrices. The parameters fully converged after seven rounds of
optimization.

Some of the parameters in Table 5 have tight confidence intervals, e.g. sug-
gesting the strong impact of gender and stressors on rumination, of rumination
and past depression on depressive symptoms, and of rumination on memory
time. These are indeed the more relevant theoretical findings we may be seek-
ing in this model. On the other hand, parameters specifying the pink noise
characteristics are less reliable. It is possible that our data are not able to fully
constrain the model parameters, or better model structures could be devised
that fit these data more closely and with less variance in parameters. More-
over, the use of the analytical method used to calculate the confidence inter-
vals, which relies on the normality of estimated parameters, may be
imprecise. Indirect inference estimators are asymptotically normally distrib-
uted when auxiliary-empirical statistics are normally distributed. When that
assumption is not reliable the use of bootstrapping methods (Dogan, 2007),
while computationally more expensive, is more robust in finding the confi-
dence intervals.

Figure 3 compares the results of the first round of optimization and the final
optimization. The circles represent the simulated-auxiliary statistics and the
bars depict the 95 percent confidence interval of empirical-auxiliary statistics
(in which such confidence intervals are available from auxiliary model esti-
mations). The estimated parameters from the first round of optimization gen-
erate a few simulated-auxiliary statistics that are far away from the 95
percent confidence interval of the empirical-auxiliary statistics (Figure 3A).
After 10 rounds of optimization almost all of the simulated-auxiliary statistics
are within the 95 percent confidence intervals of the empirical-auxiliary sta-
tistics (Figure 3B). Table 6 presents the values of the simulated and empirical
auxiliary statistics shown in Figure 3.
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Model specification and refinement

As explained in the fifth step of the method, when k > p a test can be used to
assess how well a model has been specified. Using Eq. (4), the test statistic
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was found to be 220. The 99 percent cut-off value for a chi-square distribution
with 2 degrees of freedom (14 — 12 = 2) was 9.2. Although almost all
simulated-auxiliary statistics are within the confidence interval of the
empirical-auxiliary statistics, our ¢r is still higher than the cut-off value
(é7 =220 > 42 = 9.2); hence the model can be further refined.’

Internal validity of this method can be tested using simulations. This is a
good general practice when using complex models and estimation methods
for which proofs of consistency and efficiency do not fully apply because of
the divergence between theoretical requirements for those proofs and practi-
cal features of the problem at hand. Specifically, once a model is estimated,
it can be used to generate a synthetic dataset, which is then used to re-estimate
the model to find out if the new parameter estimates correspond closely to the
empirical estimates. We thus check whether the parameters estimated by ap-
plying the indirect inference to a synthetic dataset—generated by simulating
the calibrated model with coefficients reported in Table 5—are similar to true
values (used for creating the synthetic data). The main idea behind this test is
that in this case the data-generating process is perfectly modeled and true pa-
rameter values are known; thus any errors in parameter estimates can be at-
tributed to the estimation method. The parameters in the third column of
Table 5 are used to simulate the model and generate a synthetic dataset. All
steps explained in the description of the model are then applied to the syn-
thetic data to find the indirect inference estimates. As shown in Table 7, the
true parameters that are used to generate the synthetic data (first column)
are within the 95 percent confidence interval of the estimated parameters
using the synthetic data (second column); however, the estimated confidence
intervals are rather wide, suggesting the potential benefit of incorporating ad-
ditional auxiliary statistics into the estimation process. In this synthetic esti-
mation exercise the overall goodness of fit statistic, &, is 7.48, which is
lower than the cut-off value (9.2), and thus the test does not reject the overall
fit of the model to synthetic data, which is reassuring. Moreover, repeating this
synthetic estimation a few hundred times would provide the bootstrapped
confidence intervals for the model parameters, which are typically more reli-
able than the asymptotic estimates reported in Table 7.

Finally, building confidence in the estimation results calls for the inspec-
tion of individual parameter values and simulating the model extensively to
ensure its behavior is robust and does not violate trends in data or physics
of the problem. To demonstrate, we simulated the model using three different
sets of parameters reported in Table 5 (i.e. initial parameters, parameters esti-
mated in the first round of optimization and parameters estimated in the 10th
round of optimization). For each set of parameters, we ran the model for 2500
female adolescents by changing the rumination and depression noise seeds
and setting initial depressive symptoms, rumination and stressors at their
mean. Results, reported in the online Appendix, show consistency among
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Table 6. Values of em-
pirical auxiliary statistics
and simulated auxiliary
statistics generated using
the estimated parameters
from the first and higher
rounds of optimization

Table 7. Estimated  pa-
rameters using empirical
data and synthetic data

Simulated Simulated
auxiliary statistics auxiliary statistics
Empirical auxiliary (first round of (10th round of
Regression Statistics statistics optimization) optimization)
by —0.4663[—1.4883, 0.5557]" —0.48496 —0.09359
b, 0.2313[0.1680, 0.2947] 0.196941 0.511783
b 1.2021[0.3046, 2.0996] 1.128222 1.609224
b, 0.1316[0.0064, 0.2569] 0.134688 0.221293
Equation bs 0.4548[0.3819, 0.5276] 0.38188 0.225195
(5) bg 0.1749[0.1028, 0.2470] —0.01602 —0.07331
a 2.0012[1.0910, 2.9113] 2.004988 2.234688
Equation a, 0.2526[0.1894, 0.3157] 0.263558 0.234232
(6) as 0.5559[0.4760, 0.6358] 0.538416 0.5394
Equation ¢ —0.0201[—0.06850, 0.0282] —0.02015 —0.06472
(7) Cy —0.1222[-0.1588, —0.0857] —0.04511 —0.00205
Mean of depressive
symptoms at T; 9.7852 [9.2013, 10.3690] 9.169462 9.722089
Mean of rumination
at T, 10.8487 [10.2665, 11.4309] 8.563383 10.31732
Mean of rumination
Mean at T, 9.9546 [9.3475, 10.5617] 7.8181 10.13648
'95% confidence interval are presented in brackets.
Parameters used to Estimated parameters
Unknown parameters generate synthetic data using synthetic data
Rumination constant (6,) —1.2504 —0.0915 [—3.83, 3.65]"
Effect of depressive symptoms on
rumination (6,) 0.4236 0.3111 [—0.03, 0.66]
Gender coefficient (05) 2.5152 2.8423 [-1.58, 7.27]
Effect of stressors on rumination (6,) 0.2518 0.2411 [-0.19, 0.67]
Rumination coefficient (65) 0.1639 0.1722 [—-1.19, 1.54]
Depression constant (6) 0.3730 —0.4226 [—7.00, 6.15]
Effect of rumination on depressive
symptoms (6;) 0.0699 0.0948 [0.05, 0.14]
Depression coefficient (0g) 0.8894 0.8923 [0.77, 1.01]
Effect of rumination on memory
time () 1.4741 1.4920 [1.39, 1.60]
Standard deviation of rumination
noise (010) 7.8735 7.1009 [0.90, 13.30]
Standard deviation of depression
noise (014) 0.0002 17.9914 [-77.01, 113.00]
Correlation time (6,5) 1.6008 2.7767 [-1.22, 6.77]

'95% confidence interval are presented in brackets.
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simulated trends and empirical ones, which is strongest for the 10th round of
optimization.

Furthermore, polarity and magnitude of the estimated parameters should
be considered to ensure that they are intuitively sound. For example, the
negative polarity of 6,—which was positive in the base case but estimated
to be negative— calls for closer attention because rumination should not
become negative. Further inspection suggests this negative constant is com-
pensated for by the average impact of depression, gender and stressor mem-
ory (which are all positive), so that calculated values for indicated
rumination remain non-negative.

Conclusion

This article provides a step-by-step introduction to the indirect inference
method for estimating unknown parameters of dynamic models. In this
method, the unknown parameters of the model of interest are estimated by
matching the properties of empirical data and simulated data. In many appli-
cations, there are few empirical data points available over time; as a result, it is
not feasible to use conventional estimation methods such as the least squared
error. In addition, unlike traditional methods, indirect inference does not re-
quire calculation of the likelihood function, which may well be intractable
for complex models. The indirect inference method extends the method of
simulated moments by removing the requirement that the matching statistics
be a set of valid moments. They can be parameters of an auxiliary model,
which is not an accurate description of the data-generating process, but it
can be estimated easily by conventional estimation methods. This extension
opens the door to utilizing a large range of auxiliary statistics that may be
more informative than regular moments, capture dynamic features of the data
not included in regular moments, and include better signal-to-noise ratio.
When the dynamic model is too complicated with intractable likelihood func-
tion, when very few empirical data points exist over time, or when the number
of available valid moments are smaller than the number of parameters of the
model, indirect inference might be one of the few feasible options to estimate
the unknown parameters of an SD model.

Introducing the indirect inference approach to the SD community has two
distinct benefits. First, it can make the contribution of SD to other fields
more salient. For example, previous models of MDD have not explicitly in-
corporated the feedback mechanisms we discussed in our model
(Wittenborn et al., 2016). Our modeling and estimation results suggest that
these feedback mechanisms are indeed important and may be central to un-
derstanding MDD. While the previous literature has speculated about such
feedback mechanisms, it did not quantify them properly. More generally,
qualitative data often establish the existence of a feedback mechanism,
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and the really challenging task is estimating the strength of those mecha-
nisms, which is central to both theory and practice. This estimation practice
also contributes beyond SD by shedding light on the mechanisms through
which stress and rumination contribute to depression. Although previous
studies showed that rumination mediates the relations between stressful
events and depression (Michl et al., 2013), the mechanism of rumination’s
influence was not known; only one study hypothesized that rumination con-
tributes to depression by keeping stressors alive without testing it (Ruscio
et al., 2015). We examined the validity of the hypothesized pathway by
capturing it in the first loop of Figure 1 and estimating the significance of
related parameters. In addition, in another article (Hosseinichimeh et al.,
2016), we estimate the time to forget a stressor separately for boys and girls,
which is a useful measure for clinicians, and we simulate the model for
diverse patients under different conditions and investigate the progression
of depressive symptoms for them.

Second, this article also contributes to the SD discipline. In the absence of in-
direct inference, traditional calibration methods in the SD literature would not
allow for the use of common data structures available in this field (e.g., with
2-3 data points per person) to estimate a feedback-rich model. Many empirical
datasets in psychology, medicine, organization studies, economics and sociol-
ogy share a similar structure. Thus a gap has emerged between the focus of SD
modeling (which often focuses on building feedback-rich models) and the focus
of mainstream research in social and behavioral fields (which often attempts to
estimate simple models). Our results show the potential synergies between SD
and indirect inference that could be explored well beyond MDD research.

Many advances in statistics have enabled researchers to estimate increas-
ingly complex and realistic models with diverse types of data over the past
three decades. We believe that for SD to contribute to mainstream disciplinary
research across various fields of social and behavioral sciences, modelers
must be able to draw on the best available methods in order to estimate
feedback-rich, mechanism-based models using quantitative data. We hope
that the introduction of indirect inference extends the toolbox of SD re-
searchers and allows them to combine the benefits of a broad model boundary
and feedback richness—which traditional SD brings to understanding various
phenomena—with the quantitative rigor of modern econometrics.

Note

i. In applications of indirect inference, it is common that the chi-square test
rejects the hypothesis that the model is indistinguishable from the true
data-generating process. This is a very high bar to set for any simulation
model: to generate data in a way that the resulting auxiliary statistics are in-
distinguishable from the true data-generating process. Various unobserved
external influences often exist on the system’s dynamics that make it hard,
if not impossible, to satisfy such criteria. Moreover, the chi-square test is
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potentially over-sensitive because it penalizes non-normal error terms with
a normality assumption. Because normal distribution has thin tails, the sta-
tistic penalizes large errors very significantly, compared to what might be
more appropriate for common fat-tailed distributions for the error. Thus it
is more appropriate, and more often used, as a continuous metric to assess
the quality of fit rather than a binary rejection/acceptance test.
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